Positivity-Preserving Discontinuous Galerkin Methods with Lax-Wendroff Time Discretizations

نویسندگان

  • Scott A. Moe
  • James A. Rossmanith
  • David C. Seal
چکیده

This work introduces a single-stage, single-step method for the compressible Euler equations that is provably positivitypreserving and can be applied on both Cartesian and unstructured meshes. This method is the first case of a singlestage, single-step method that is simultaneously high-order, positivity-preserving, and operates on unstructured meshes. Time-stepping is accomplished via the Lax-Wendroff approach, which is also sometimes called the Cauchy-Kovalevskaya procedure, where temporal derivatives in a Taylor series in time are exchanged for spatial derivatives. The LaxWendroff discontinuous Galerkin (LxW-DG) method developed in this work is formulated so that it looks like a forward Euler update but with a high-order time-extrapolated flux. In particular, the numerical flux used in this work is a linear combination of a low-order positivity-preserving contribution and a high-order component that can be damped to enforce positivity of the cell averages for the density and pressure for each time step. In addition to this flux limiter, a moment limiter is applied that forces positivity of the solution at finitely many quadrature points within each cell. The combination of the flux limiter and the moment limiter guarantees positivity of the cell averages from one time-step to the next. Finally, a simple shock capturing limiter that uses the same basic technology as the moment limiter is introduced in order to obtain non-oscillatory results. The resulting scheme can be extended to arbitrary order without increasing the size of the effective stencil. We present numerical results in one and two space dimensions that demonstrate the robustness of the proposed scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local-Structure-Preserving Discontinuous Galerkin Methods with Lax-Wendroff Type Time Discretizations for Hamilton-Jacobi Equations

In this paper, a family of high order numerical methods are designed to solve the Hamilton-Jacobi equation for the viscosity solution. In particular, the methods start with a hyperbolic conservation law system closely related to the Hamilton-Jacobi equation. The compact one-step one-stage Lax-Wendroff type time discretization is then applied together with the local-structure-preserving disconti...

متن کامل

Dispersion and Dissipation Errors of Two Fully Discrete Discontinuous Galerkin Methods

The dispersion and dissipation properties of numerical methods are very important in wave simulations. In this paper, such properties are analyzed for Runge-Kutta discontinuous Galerkin methods and Lax-Wendroff discontinuous Galerkin methods when solving the linear advection equation. With the standard analysis, the asymptotic formulations are derived analytically for the discrete dispersion re...

متن کامل

On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier-Stokes equations

We construct a local Lax-Friedrichs type positivity-preserving flux for compressible Navier-Stokes equations, which can be easily extended to high dimensions for generic forms of equations of state, shear stress tensor and heat flux. With this positivity-preserving flux, any finite volume type schemes including discontinuous Galerkin (DG) schemes with strong stability preserving Runge-Kutta tim...

متن کامل

Development and Comparison of Numerical Fluxes for LWDG Methods

The discontinuous Galerkin (DG) or local discontinuous Galerkin (LDG) method is a spatial discretization procedure for convection-diffusion equations, which employs useful features from high resolution finite volume schemes, such as the exact or approximate Riemann solvers serving as numerical fluxes and limiters. The LaxWendroff time discretization procedure is an alternative method for time d...

متن کامل

Maximum - Principle - Satisfying and 1 Positivity - Preserving High Order Central Dg 2 Methods for Hyperbolic Conservation Laws

Maximum principle or positivity-preserving property holds for many mathematical 5 models. When the models are approximated numerically, it is preferred that these important prop6 erties can be preserved by numerical discretizations for the robustness and the physical relevance of 7 the approximate solutions. In this paper, we investigate such discretizations of high order accuracy 8 within the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2017